Conical Fluidized Bed with Arc Design for Improved Performance of Gas Distributor
نویسندگان
چکیده
Particles distributions along a conical fluidized bed were predicted by an alternative arrangement of the minimum fluidization velocity equation. The proposed approach introduces two new equations which present the particle diameter in the bed as function of: height in the bed (Z), angle of inclination of the fluidized bed wall (θ), input flow rate (Qo), and gas distributor diameter (Do, 2ro). A novel arc-shaped design of the gas distributor was suggested, which provides enhanced distribution of the gas and enables greater control on the direction of the gas inlet. The model showed that the inclination of the fluidized bed wall should not exceed a critical angle, which can be determined with the set of equations specially developed for this purpose, to prevent inhomogeneous fluidization across the bed and accumulation of particles along the walls. By applying the Box Wilson Method, theoretical data were obtained for constant column diameter at the base (0.05 m), and varying bed height, Z, (range: 0.5 to 1.5 m), velocity of gas inlet, U, (range 0.25 to 1 m s), and balance factor, a, (range: 0.5 to 1, a new factor), respectively. The angle of inclination of the wall was first predicted based on the above parameters, and subsequently, the particle size distribution along the column was determined. Theoretically the novel arc-shaped distributor design has shown the potential of generating homogeneous fluidization regimes along the bed.
منابع مشابه
Effect of Novel Swirl Distributor Plate on Hydrodynamics of Fluidized Bed Gasifier
The main advantage of a fluidized bed is its capability in excellent gas-fuel mixing. However, due to the lacks of gas radial momentum, its lateral mixing of gas-solid is not adequate. Therefore, this research is focused on fluidized bed hydrodynamics enhancement using the modified gas distributor plate design. For getting an optimum fluidized bed hydrodynamics prediction, three different class...
متن کاملCFD Modeling of TiO2 Nano-Agglomerates Hydrodynamics in a Conical Fluidized Bed Unit with Experimental Validation
In the computational fluid dynamics (CFD) modeling of gas-solids two phase flow, the effect of boundary conditions play an important role in predicting the hydrodynamic characteristics of fluidized beds. In this work, the hydrodynamics of conical fluidized bed containing dried TiO2 nano-agglomerates were studied both experimentally and computationally. The pressure drop ...
متن کاملSegregation patterns of an equidensity TiO2 ternary mixture in a conical fluidized bed: CFD and experimental study
In this study, an Eulerian-Eulerian multi-fluid model (MFM) was used to simulate the segregation pattern of a conical fluidized bed containing ternary mixtures of equidensity TiO2 particles. Experimental 'freeze–sieving' method was employed to determine the axial mass fraction profiles of the different-sized particles, and validate the simulation results. The profiles of mass fraction for larg...
متن کاملHydrodynamic Behavior of Particles in a Jet Flow of a Gas Fluidized Bed
Numerous investigations have been devoted towards understanding the hydrodynamics of gas jets in fluidized beds. However, most of them address the problem from macroscopic point of view, which does not reveal the true behavior in the jet region at the single particle level. The present work aims to understand the jet behavior from a more fundamental level, i.e. the individual particle leve...
متن کاملExperimental Study of Coating in a Bottom Sprayed Fluidized Bed
Several investigations have been devoted towards understanding the coating process in fluidized beds. Most of these studies focused on spraying liquid droplets over the bed. However, due to the complexity of these systems, more investigations are still required to quantify the effect of operating conditions on the coating criteria. The present work aims at fundamentally understanding and pr...
متن کامل